ADDITION GUIDELINES		
Year One	Year Two	Year Three
Add numbers using concrete objects and pictorial representations One-digit and two-digit numbers to 20 including 0. $+=$ signs and missing numbers Children need to understand the concept of equality before using the ' $=$ ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'. $\begin{aligned} & 2=1+1 \\ & 2+3=4+1 \\ & 3=3 \\ & 2+2+2=4+2 \end{aligned}$ Missing numbers need to be placed in all possible places. Complete empty box number sentences eg: $\begin{array}{ll} 3+4=\square & \square=3+4 \\ 3+\square=7 & 7=\square+4 \\ \square+4=7 & 7=3+\square \\ \square+\nabla=7 & 7=\square+\nabla \end{array}$ Using a number line Addition *In the jump number eg: For above example 1, 2, 3, 4 (because we have added 4) Counting on Holding a number in your head and using fingers to count on Cubes Representing a number sentence and using the cubes to combine and count a total	Add numbers using concrete objects, pictorial representations, and mentally including: a two-digit number and 1s, a two-digit number and 10s, 2 two-digit numbers 3 one-digit numbers $+=$ signs and missing numbers $14+5=10$ + and $32 \square+\square=100 \quad 35=1+\square+5$ Inverse Recognize and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems $14-6=8 \text { so } 8+6=$ Missing number problems using inverse to solve. The Hundred Square 100 square to be used for numbers below twenty. Finding numbers one or ten more. Adding 10 to a one digit number. Using an empty number line (the step before is to have numbers on the number line) Addition $23+12=35$ NB. Before children begin this method they must be secure in adding multiples of 10 to 2-digit numbers	$+=$ signs and missing numbers solve problems including Missing number Using number facts Place value More complex addition This is also to include missing number compact written method. Written method - compact Add numbers with up to 3 digits, using formal written methods of columnar addition $\begin{aligned} & \text { HTU + HTU } \\ & 367+185=552 \end{aligned}$ HTU 367 $\frac{185}{}+$ $\frac{552}{11}$ HTU + HTU + HTU Columns must be labelled with H T U etc... and the addition sign written on the right hand side. * Ensure that calculations involving 2 and 3 digit numbers are used throughout the year. *Remember to include some decimals to solve money problems

	Bridging through ten $8+7=15$ Children write the difference between steps within the jumps. Partitioning When secure show this written. $\begin{aligned} & 23+12=35 \\ & 23+10=33 \\ & 33+02=35 \end{aligned}$	
Mental calculations	Mental calculations	Mental calculations
Number bonds Children should be secure in facts within 20 Addition Adding 1 more Know all addition facts up to 5 Know all addition pairs to 10 Know all addition facts up to 10 Add all 1 digit numbers including those that cross 10	Number bonds Recall and use addition facts to 20 fluently, and derive and use related facts up to 100 Addition Add 1 digit numbers to 2 digit numbers Add multiples of 10 to a 2 digit number	Resources Children to use dienes apparatus to represent numbers and show addition before moving onto mental Numberbonds A three-digit number and 1 s A three-digit number and 10 s A three-digit number and 100s Recall and use addition facts to 20 fluently, and derive and use related facts up to 100 Partition into tens and units Show visually a method which supports mental calculation. Represent this. $36+53=$ (children should start with largest number when adding) $\begin{aligned} & 53+30=83 \\ & 83+06=89 \end{aligned}$ When children are secure with this method

