1. Convert the improper fractions to mixed numbers.

 a) \(\frac{8}{5} = 1 \frac{3}{5} \)

 b) \(\frac{12}{5} = 2 \frac{2}{5} \)

 c) \(\frac{9}{4} = 2 \frac{1}{4} \)

 d) \(\frac{5}{3} = 1 \frac{2}{3} \)

2. Shade the bar models to represent each improper fraction. Convert the improper fractions to mixed numbers.

 a) \(\frac{7}{3} = 2 \frac{1}{3} \)

 b) \(\frac{8}{3} = 2 \frac{2}{3} \)

 c) \(\frac{9}{4} = 2 \frac{1}{4} \)

 d) \(\frac{11}{4} = 2 \frac{3}{4} \)
3. Convert the improper fractions to mixed numbers.

 a) \(\frac{10}{2} = 5 \)
 b) \(\frac{10}{3} = 3 \frac{1}{3} \)
 c) \(\frac{10}{4} = 2 \frac{1}{2} \)
 d) \(\frac{10}{5} = 2 \)
 e) \(\frac{12}{5} = 2 \frac{2}{5} \)
 f) \(\frac{13}{6} = 2 \frac{1}{6} \)
 g) \(\frac{13}{7} = 1 \frac{6}{7} \)
 h) \(\frac{31}{8} = 3 \frac{7}{8} \)

4. Eva has 7 bottles of juice.
 Each bottle contains half a litre of juice.

 How many litres of juice does Eva have altogether?

 Write your answer as a mixed number.

5. Dexter is converting improper fractions.

 \(\frac{32}{3} = 3 \frac{2}{3} \)

 Explain why Dexter is incorrect.

6. Find the value of

 \[27 = \star \]
 \[2 = \triangle \]

7. Find two possible values for \(\star \) and \(\triangle \)

 \[30 = \star \]
 \[2 = \triangle \]

 \[\star = 14 \]
 \[\triangle = 2 \]

 \[\star = 7 \]
 \[\triangle = 4 \]
1. Convert the mixed numbers to improper fractions.

 a)
 \[2\frac{3}{4} = \frac{11}{4} \]

 b)
 \[2\frac{3}{8} = \frac{19}{8} \]

 c)
 \[3\frac{3}{8} = \frac{27}{8} \]

2. Convert the mixed numbers to improper fractions.
 Colour the bar models to help you.

 a)
 \[2\frac{1}{4} = \frac{9}{4} \]

 b)
 \[2\frac{1}{3} = \frac{7}{3} \]

 c)
 \[3\frac{1}{3} = \frac{10}{3} \]

 d)
 \[3\frac{2}{5} = \frac{13}{5} \]
3 Convert the mixed numbers to improper fractions.
Write the next conversion in each part.

a) \[2 \frac{1}{7} = \frac{15}{7}\]
\[2 \frac{2}{7} = \frac{16}{7}\]
\[2 \frac{3}{7} = \frac{17}{7}\]
\[2 \frac{4}{7} = \frac{18}{7}\]

b) \[3 \frac{1}{5} = \frac{16}{5}\]
\[4 \frac{1}{5} = \frac{21}{5}\]
\[5 \frac{1}{5} = \frac{26}{5}\]
\[6 \frac{1}{5} = \frac{31}{5}\]

Talk to a partner about any patterns you spot.

4 Here are 4 whole pizzas and \(\frac{3}{5}\) of a pizza.

How many children can have \(\frac{1}{5}\) of a pizza? \[23\]

5 Whitney is converting mixed numbers to improper fractions.

\[4 \frac{1}{7} = \frac{28}{7}\]

Do you agree with Whitney? \[\text{No}\]

Explain your answer.

She has converted \(\frac{4}{7}\) wholes to \(\frac{28}{7}\) but forgotten to add the extra sevenths.

6 The table shows some possible values of the circle.
Use this to find the corresponding value of the triangle.

<table>
<thead>
<tr>
<th>(\odot)</th>
<th>(\triangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>83</td>
</tr>
<tr>
<td>17</td>
<td>88</td>
</tr>
<tr>
<td>160</td>
<td>803</td>
</tr>
</tbody>
</table>